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Abstract This paper addresses the example-based styl-

ization of videos. Style transfer aims at editing an im-

age so that it matches the style of an example. This

topic has recently been investigated massively, both in

the industry and academia. The difficulty lies in how

to capture the style of an image and correctly transfer-

ring it to a video. In this paper, we build on our pre-

vious work ”Split and Match” for still pictures, based

on adaptive patch synthesis. We address the issue of

extending that particular technique to video, ensuring

that the solution is spatially and temporally consistent.

Results show that our video style transfer is visually

plausible, while being very competitive regarding com-

putation time and memory when compared to neural

network approaches.

Keywords Style Transfer · Texture Synthesis ·
Non-photorealistic Rendering · Video Processing

1 Introduction

Style transfer consists in transferring the style of an ex-

ample, typically a painting, to another image or video.

This problem has received recently a considerable inter-

est [1,2], especially with the blooming of convolutional

neural network approaches [3,4,5]. There are many ap-

plications to style transfer, ranging from social net-

works, virtual reality to movie post-production.

The upcoming film “Loving Vincent” 1 can be seen

as a remarkable example of the practical possibilities of

style transfer. This endeavor is claimed to be the first

fully painted feature film to be made, and includes an

average of 12 oil paintings per second of video. Note

Address(es) of author(s) should be given

1 http://join.lovingvincent.com/

that more than 100 painters were involved in the pro-

duction, which is a painstaking work that could be fa-

cilitated by style transfer techniques.

In this paper, we build on our recent paper [6] that

proposed a patch-based method for style transfer, and

extend this approach to video content. Example-based

patch methods have been sucessfully used in various

cases, ranging from texture synthesis [7], inpainting [8],

to super-resolution [9]. These methods have proven their

capability to capture knowledge about the image based

on the content intra-similarity. In this paper, we extend

this patch-based approach to video, where an efficient

optical flow method is used to track parts of the im-

age, while inconsistencies of the tracking (captured by

a metric on motion reliability) are handled by a spa-

tially and temporally consistent patch synthesis.

2 Related Work

Style transfer can be traced back to two seminal pa-

pers, “Image Analogies” [10] and “Image quilting” [7],

which presented non-photorealistic rendering based on

example images as one possible application of texture

synthesis. Closely related is the concept of color trans-

fer [11], where one seeks to transfer the color palette

from a target to a source image.

In Image Analogies, style transfer is computed as a

pixelwise texture synthesis, inspired by the non-parametric

sampling approach of [12]. An analogy is defined as the

relationship (transformation) between a pair of aligned

example images, typically a non-filtered picture of a

scene and a stylized painting of this same scene. Then,

the task is to apply an analogous transformation to a

given input image, such that it has the same rendering

of the example painting. Every pixel to be synthesized
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in the output image is selected from the example paint-

ing, by minimizing an energy accounting to the sim-

ilarity between the input picture and the non-filtered

example picture. A seminal work in video style transfer

was conducted in [13], as an extension of image analo-

gies to stylization of video animations. Temporal coher-

ence is enforced and neighborhood matching is acceler-

ated by using the randomized patch correspondences of

“PatchMatch” [14]. Nevertheless, the method still has

high computational complexity as it perform a pixel-

wise style synthesis, which results in large search space

for neighborhood matching. Furthermore, it is worthy

noting that approaches based on image analogies as-

sume the existence of a registered pair of example im-

ages from which the style analogy is learned, which con-

strain the practical use of such methods.

The work of [7], in parallel with [15], have intro-

duced the concept of patch sampling for texture synthe-

sis and texture transfer. These methods perform example-

based synthesis by sampling from a pool of candidate

patches, which are selected from an example image.

Sampling patches instead of pixels have the advantage

of lower computational complexity, but a post-processing

step may be required to overcome blocking artifacts.

In [15], linear interpolation is used to produce seam-

less patch blending, while in image quilting [7], optimal

patch boundary cuts are computed.

Our previous work [6] has shown that the qual-

ity of patch-based style transfer can be improved by

adapting the patch dimensions to the structure of the

original and example images. Inspired by [16] and [17]

the “Split and Match” approach considers a Markov

Random Field (MRF) probability density modeling and

computes an approximate Maximum a Posteriori (MAP)

solution through loopy belief propagation [18]. A follow-

up patch-based approach [19] for style transfer is also

based on adaptive patches for capturing the style from

example images. In this paper, we extend our previous

still image style transfer [6] to image sequences, as a

fast and efficient approach for video style transfer.

The paper of [3] has introduced a technique that

builds upon deep Convolutional Neural Networks (CNN)

to separate and recombine the content and the style

of an original and an example image. Their main idea

is to represent style by correlations between features

from different layers of a CNN, and to represent content

by feature responses in higher layers of a CNN. Their

method produces impressive results for style transfer,

but has the drawback of high computational complex-

ity. This work received a great attention in vision com-

munity, inspiring other papers such as [20,?] and re-

sulted in the development of products such as “DeepArt”

2 and an accelerated smartphone application “Prisma”3.

Furthermore, an adaptation of CNN-based style trans-

fer for post-production of a feature film has been de-

scribed by [21].

Recently, neural style transfer for videos has been

proposed by [22], where temporal coherence is enforced

to the stylization by using optical flow guidance. Our

approach for temporal coherence is similar in spirit to

[22]: propagate style by motion warping where optical

flow is reliable, and resynthesizing style where optical

flow is not reliable.

It should be noted that image and video style trans-

fer based on deep CNN’s differs considerably from our

approach, since it assumes a pre-trained neural network

architecture. Although results of neural style transfer

are mostly excellent, as remarked by [23], the styliza-

tion by neural networks tends to be unpredictable in

practice. On the other hand, patch based approaches

may be advantageous for a more predictable stylization

that better preserves the main structures in the original

image.

3 Split and Match for Still Images

In this section, we briefly review our “Split and Match”

approach, which proposes a patch-based algorithm to

transfer the style of an example (or style) image to an

input image. A more detailed version of this style trans-

fer method can be found in our recent paper [6]. This

approach, illustrated by Figure 2, starts by construct-

ing an adaptive quadtree segmentation of the input im-

age geometry, taking into account the capacity of the

patches in the quadtree to be represented by patches

of the style image. This adaptive partition is neces-

sary to respect the original image geometry, using small

patches (fine brushes) along geometric features, while

letting large patches (rougher brushes) to capture the

style of the example image everywhere else. Let us de-

note by u : Ωu → R3 the input image and v : Ωv → R3

the example image. For two regions R and R′ of similar

size of Ωu and Ωv, we write u(R) and v(R′) the respec-

tive restriction of u and v to R and R′, and we define

the normalized distance between u(R) and v(R′) by

d[u(R), v(R′)] =
||u(R)− v(R′)||2

|R|
, with |R| the size of R.

(1)

The Split and Match decomposition works as follows.

Starting from the region R1 := Ωu, each rectangle Ri

2 https://deepart.io/
3 http://prisma-ai.com/
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Fig. 1: On the left, MRF over a regular grid and on the right MRF over an adaptive image partition. The bottom

layers represent image units from the observed scene, while nodes in the top layer represent hidden image units

that we search to estimate through inference. Vertical edges represent data fidelity terms, while horizontal edges

represent pairwise compatibility terms.

No match found

Input image u Example style image v

Split

Best label

Homogeneous patch

Match

Best label
Feature patch Final quadtree subdivion

All selected patches

Fig. 2: Illustration of our Split and Match approach [6] for style transfer between still images. From left to right:

the input image u is recursively splitted into patches. Each patch is matched with the example image, and if there

is a match sufficiently close, or if the patch variance is sufficiently small, the splitting is ended. Each patch over

region Ri has a set of label candidate patches Li, from which a best label is computed by loopy belief propagation.

As it can be seen in the figure, the patch labels on the left part account mostly for style (homogeneous patches

in the original image), while the label patches on the right part account mostly for smaller feature patches, which

account for reconstructing details and geometry in the stylized image.

of the partition is split into four equal rectangles if(√
Var(u(Ri)) + d[u(Ri), v(Rvi )] > ω and

√
|Ri| > Υ0

)
or
( √

|Ri| > Υ1

)
, (2)

where Rvi is the rectangle R of the style image v min-

imizing the distance d[u(Ri), v(R)], ω is a similarity

threshold (fixed to ω := 15), Υ0 is the minimum patch

size and Υ1 the maximum patch size allowed in the

quadtree (respectively fixed to 82 and 2562). At the

end of this decomposition, for each region Ri of the fi-

nal quadtree a set of M candidate labels Li = {lim}Mm=1

is selected by computing the M-nearest neighbors of the

patch u(Ri) in v. The label lim is the central pixel of the

mth nearest region of u(Ri) in v. These patch labels are

also required to be sufficiently distant from each other

to favor label variety.

In a second step, we rely on a Markov Random Field

model over the final partition {Ri}ni=1 to minimize pair-

wise distances and patch differences. More precisely, we

search for the set of label assignments L̂ = {l̂i}ni=1 max-

imizing a probability density

P (L) =
1

Z

∏
i

φ(li)
∏

(i,j)∈N

ψ(li, lj), (3)

where Z is a normalization constant, φ is a data fidelity

term and ψ a compatibility term between neighboring

regions ((i, j) ∈ N means that Ri and Rj are neighbors

in the quadtree). The data fidelity term φ is defined as

φ(li) = exp(−λd d[u(Ri), v(Rli)]), (4)

where Rli is the region of label li in v, and λd a positive

weight (fixed to 2 in practice). The role of the function ψ
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is to ensure that neighboring candidate patches are sim-

ilar enough at the vicinity of their common frontier. Ex-

tending each region Ri of the quadtree in each direction

by 50% yields overlapping regions R̃i. For (i, j) ∈ N ,

ψ(li, lj) is then defined as a mix of a smoothness term

and a term penalizing local label repetitions

ψ(li, lj) = exp(−λs d∩[v(R̃li), v(R̃lj )]+λr |li−lj |2), (5)

with λs and λr two positive weights (fixed to 2 and 1

in all experiments), and where d∩[v(R̃li), v(R̃lj )] is the

normalized quadratic distance between the candidates

v(R̃li) and v(R̃lj ) on the overlap R̃i ∩ R̃j .
In order to maximize the probability density (3), we

adopt the Loopy Belief Propagation method [18], [24].

In this approach, neighboring variables update their

likelihoods by message passing which permits to maxi-

mize the density (3) in a few number of iterations.

To avoid stitching artifacts along patch borders (see

Figure 3), patches are eventually merged through a lin-

ear alpha blending, ensuring smoother transitions be-

tween neighbors. The last and optional step of the algo-

}

Overlap
Visible seam Bilinear blending Blended seam

Fig. 3: Illustration of the bilinear blending used to avoid

stitching artifacts.

rithm is a color transfer [25] used to match consistently

the color palettes of the original and example images,

combined with a global contrast specification approxi-

mated by a power law model. The whole process results

in a stylized image ũ.

4 Video Style Transfer

We explain in this section how to adapt our Split and

Match style transfer to image sequences. Obviously, ap-

plying an independent style transfer to each frame of a

sequence leads to strong texture flickering and poor vi-

sual results, even if neighbor frames share most of their

geometry and color (see the left column of Figure 9). In

order to impose coherence between frames, we propose

a motion-based temporally coherent stylization, illus-

trated by Figure 4.

In the following, we denote by U = {ut}Dt=1 the

input image sequence and by v the example (style) im-

age. Each discrete image ut : Ω → R3 is defined over

the same discrete domain Ω. A “keyframe rate” r is

chosen in such a way that we have one keyframe for

each second of video (typically, r := 25 for a 25 fps

video). We write Uk,k+r = {ut}k+r−1t=k+1 the set of all

frames delimited between the keyframes uk (also called

left keyframe) and uk+r (right keyframe). At the begin-

ning of the algorithm, our Split and Match algorithm

is applied to transfer the style of the example image

v to the central keyframe of the movie. To ensure a

temporally stable stylization, we rely on optical flow to

propagate the style to all other keyframes, recomput-

ing the style transfer in regions where motion is unreli-

able. We call this process Temporal Style Propagation

(TSP). Once all keyframes have been stylized, for each

set of frames Uk,k+r, we propagate the style from the

stylized left keyframe ũk in forward direction to all im-

ages ut from Uk,k+r, then we propagate the style from

ũk+r in backward direction and finally we blend the

forward and backward stylized frames by linear inter-

polation. This stylization “by chunks” is repeated until

the end of sequence, as summarized in Algorithm 1 and

illustrated by Figure 5.

Algorithm 1 Video Style Transfer

Input: Video U , example style v, keyframe rate r, length D
Output: Stylized video Ũ
1: k0 ← D

2
2: Split and Match Style Transfer (SMT) for keyframe uk0

:
3: ũk0

← SMT (uk0
, v)

4: Ũ ← {ũk0
}

5: Set of keyframe indexes, starting from center:
6: K ← {k0, k0 + r, k0 + 2r, ..., D} ∪ {k0 − r, k0 − 2r, ..., 1}
7: Forward-backward Propagation between keyframes:
8: ε← r
9: Ũ ← Ũ∪ FBP(U , Ũ , ε,K)

10: Forward-backward Propagation for remaining frames:
11: ε← 1
12: Ũ ← Ũ∪ FBP(U , Ũ , ε,K)

Algorithm 2 FBP (Forward-backward propagation)

Input: U, Ũ, ε,K
Output: {ũi} , i = {1, 1 + ε, 1 + 2ε, ..., D}
1: for k ∈ K do
2: Temporal Style Propagation in forward direction:
3: Ũf

k,k+r ← TSP(Uk,k+r, ũk, k, ε)
4: Temporal Style Propagation in backward direction:
5: ε̂← −ε
6: Ũb

k,k+r ← TSP(Uk,k+r, ũk+r, k + r, ε̂)
7: Forward-backward blending
8: Ũk,k+r ← αtŨ

f
k,k+r + (1− αt) Ũb

k,k+r
9: end for
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Fig. 4: Overview of our Temporal Style Propagation (TSP). Assuming that the frame ut? has been stylized, we

show how to propagate the stylization to ut (t? = t− 1 when we propagate in the forward direction). On the left,

the stylized frame ũt? . Motion warping is applied to the stylized keyframe ũt? to obtain a first estimate of the

stylized frame ũt. Since motion is not reliable everywhere, a motion reliability map is also deduced (unreliable

pixels are shown in black). To improve the first estimate of ũt, we re-synthesize all regions containing unreliable

pixels by solving an optimal labeling problem. The final stylized image ũt (on the right) is obtained by blending

the re-synthesized regions with the motion warped estimate.

4.1 Temporal Style Propagation

We describe in this section the details of our Tempo-

ral Style Propagation, used first to ensure coherence

between keyframes and then to propagate the style to

all frames. In a nutshell, Temporal Style Propagation

is a combination of optical flow warping and optimal

patch labeling in regions where motion is unreliable.

The whole propagation process is illustrated by Fig-

ure 4.

For the sake of simplicity, we assume in the follow-

ing that a keyframe uk has been stylized (the stylized

version is written ũk) and that we wish to propagate the

style to all the frames ut for t in the set [k+1, k+r−1].

Writing t? = t−1, style is propagated in the forward di-

rection from both images ut? and uk to ut (if t = k+ 1,

both images ut∗ and uk are identical). The propagation

in the backward direction follows the same path, using

t∗ = t + 1. The propagation between two keyframes in

the first part of the algorithm is similar, starting from

the central keyframe stylized by Split an Match, and

propagating first to subsequent frames and second to

previous keyframes.

To estimate motion fields between successive frames,

we rely on the recent DeepFlow algorithm [26], which

combines a variational approach with descriptor match-

ing to compute a dense offset map from a pair of images.

The motion field between ut? and ut is written as an

offset map ∆t?,t such that ut∗(x + ∆t?,t(x)) ' ut(x)

everywhere. We denote the warping of ut? by

uwt := W (ut? , ∆t?,t) = ut∗(.+∆t?,t(.)),

where ut∗ is interpolated by bicubic interpolation on

non integer coordinates. Optical flow between non suc-

cessive frames (for instance two keyframes) is obtained

by composition of successive pairwise optical flows.

A first estimate of the stylized frame ũt is given

by ũwt := W (ũt? , ∆t?,t). Obviously, warping the pre-

viously stylized frame ũt? by optical flow encourages

temporal coherence between ũt and ũt∗ , but optical

flow estimation is not always reliable, and motion vec-

tors remain unknown in some areas (occlusions, domain

boundaries). To address these limitations, we compute

a reliability map, defined as a combination of an oc-

clusion map and a motion accuracy map. The motion

accuracy map is defined as the set of pixels such that

the absolute error between the original frame and the

motion warped frame is larger than a threshold τe (set

in practice to 25)

At(x) =

{
1, if |ut(x)− uwt (x)| < τe,

0, otherwise.

According to [27], a simple and effective approach to

compute occlusions is to take the residual between the

forward and the backward optical flow:

Ot(x, y) =

{
1, if |∆t?,t(x) +∆t,t?(x)|2 < τm,

0, otherwise,

where τm := 0.01(|∆t?,t|2 + |∆t+1,t|2) + 0.05. Thus, the

set of coordinates where optical flow is not reliable and

where style transfer needs to be resynthesized is given

by

χt =

{
(x, y) ∈ Ω

∣∣∣∣At(x, y)Ot(x, y) = 0

}
. (6)

In order to re-synthesize style on χt, we start by

computing a quadtree partition R = {Ri}ni=1 for ut,

with a variance only stopping criteria (threshold set

to 15 in practice) for the quadtree splitting. Next, we

divide this partition in two sets R = R
′ ∪R′′ , where

R
′

= {Ri ∈ R′; χt ∩Ri 6= ∅}

is the set of patches to be relabeled and R
′′

the set of

patches considered as already stylized. Temporal style
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propagation on R′ can be posed as a supervised style

transfer, in the spirit of [10]. Indeed, we know both the

keyframe uk and its stylized version ũk, and we can

take advantage of this knowledge to compute ũt. The

core idea is that if two patches ut(Ri) and uk(R) are

similar in structure, then the patch ũt(Ri) should be

similar in style to ũk(R). Since ut and uk are expected

to have considerable overlapping content, it also turns

out to be much easier to find patch correspondences be-

tween them than between ut and the exemple image v.

Consequently, for each region Ri in R′, a set of M can-

didate labels Li = {lim}Mm=1 is selected by computing

the M-nearest neighbors of the patch ut(Ri) in uk.

Next, we search for the optimal set of label assign-

ments L̂ = {l̂i}#R
′

i=1 (with #R′ the size of R′) minimizing

the energy

E(L) = λdEd(L) + λsEs(L) + λtEt(L),

(7)

where Ed is a data fidelity term, Es is a spatial smooth-

ness term, Et a temporal coherence term and λd, λs, λt
the respective weights of each term. These three terms

are defined as follows:

1. The data fidelity term is given by

Ed(L) =

#R′∑
i=1

d[uk(Rli), ut(R
′
i)]. (8)

It can be noted that this data term differs from the

one used for single image style transfer, since it com-

pares patches of the non-stylized images ut and uk.

2. The spatial smoothness term is defined as

Es(L) =
∑

(i,j)∈N

d∩[ũk(R̃li), ũk(R̃lj )]. (9)

to encourage smooth transitions between stylized

patches (we remind that the notation R̃ denotes ex-

tended regions, see Section 3).

3. The temporal coherence term is given by

Et(L) =

#R′∑
i=1

d[uct(Ri), ũk(Rli)], (10)

where uct is a combination of ũwt (stylized frame ũt?

warped by optical flow) and ut, defined as

uct := [(1− 1χt
)� ũwt? ] + [1χt

� ut]. (11)

This temporal coherence cost favors intensities of

a stylized patch at time t to remain similar to the

warped intensities from t? for all coordinates where

optical flow is reliable. This temporal coherence is

already guaranteed for patches contained in R
′′
.

Once the optimal set L̂ has been estimated by Loopy

Belief Propagation, we use the bilinear patch blending

described in Section 3 to obtain an image ũlt. The final

reconstructed image is

ũt := Gt � ũwt + (1−Gt)� ũlt, (12)

where Gt := Gσ ∗ (1−1χt
) is the optical flow reliability

map convolved by a gaussian kernel Gσ with standard

deviation σ, for spatial blending between the motion

warped image ũwt and the labeled image ũlt. Temporal

style propagation is summarized in Algorithm 3.

Algorithm 3 TSP (Temporal Style Propagation)

Input: (Uk,k+r, ũk, k, ε)

Output: Ũk,k+r

1: t← k + ε
2: while t 6= k + r do
3: t? ← t− ε
4: ∆t?,t ← optical flow between ut? and ut

5:
6: Warp ut? and ũt? :
7: uw

t ←W (ut? ,∆t?,t)
8: ũw

t ←W (ũt? ,∆t?,t)
9:

10: Compute the motion accuracy map
11: At(x) ← |ut(x)− uw

t (x)| < τe
12: Compute the occlusion map
13: Ot(x) ← |∆t?,t(x) +∆t,t?(x)|2 < τm
14: Compute the set of coordinates to be resynthesized

15: χt ←
{

(x) ∈ Ω
∣∣∣∣Ot(x)At(x) = 0

}
16:
17: Select the set of patches R′ to be labelled by style

transfer:
18: R′ ← {}
19: for every region Ri ∈ R do
20: if Ri ∩ χt 6= ∅ then
21: R′ ← R′ ∪ {Ri}
22: end if
23: end for
24: Compute M-nearest neighbors:
25: Li ← Li = {lim}Mm=1 with |lim − lim+1

| > χ

26: Compute optimal labels L̂ for patches in R′:
27: L̂← minE(L)
28: Compute ũl

t

29: ũt ← ũl
t blended with ũw

t

30:
31: t← t+ ε
32: end while

4.2 Forward-backward blending

Temporal style propagation is applied for all sets of

frames {uk+1, uk+2, ..., uk+r−1} delimited by a “left keyframe”

uk and “right keyframe” uk+r, both in a forward and

in a backward pass. We denote the stylized sequence
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Fig. 5: Temporal Style Propagation. On the left, original frames, and on the right, stylized frames. Once all

keyframes have been stylized, for each “chunk” of frames between two keyframes uk and uk+r, we propagate the

style from the stylized left keyframe ũk in forward direction to all images ut, then we propagate the style from

ũk+r in backward direction and finally we blend the forward and backward stylized frames by linear interpolation.

This stylization “by chunks” is repeated until the end of sequence.

resulting from forward style propagation by Ũfk,k+r =

{ũft }k+r−1t=k+1 and the sequence resulting from backward

propagation as Ũ bk,k+r = {ũbt}k+r−1t=k+1 .

We can finally compute ũt as a blend of the forward

and backward pass

ũt = αtũ
f
t + (1− αt)ũbt , (13)

where αt is the linear temporal weighting factor given

by

αt =
k + r − t
k + r − k

. (14)

5 Experiments

In this section, we provide some results obtained with

the style transfer method described in this paper. In

Fig. 6 we present an experiment with our style trans-

fer method applied to two different still images with

the styles of Signac and Seurat. Remaining experiments

concern our method applied to videos. Video results

can be found at our project website: http://oriel.

github.io/video_style_transfer.html.

The results in Fig. 7 and Fig. 8 were obtained with

sequences taken from the Sintel dataset [28], which in-

cludes ground truth optical flow and occlusions. Thus,

for these results, we use the optical flow and occlusion

maps provided with the dataset.

In Fig. 9 we illustrate the interest of a temporally

coherent video style transfer in comparison to the appli-

cation of an image style transfer method in a frame-by-

frame manner. It can be noted in Fig. 9, (in particular

on the highlighted red and blue rectangles) that our

method guarantees temporal coherency of style, while

a stylization performed independently for every frame

unsurprisingly results in severe texture variation.

Finally, in Fig. 11, we compare our method to the re-

cent work [22] on a real sequence. In Fig 10, we present

the data that were used to compare our method to [22].

The top row shows frames of the original sequence,

while the second row shows the various style images

that were used. Results are then shown in Fig. 11.

For [22], we used a GPU GTX980 with 4G memory.

To fit in memory, the video had to be downsampled to a

resolution 440× 400, and the computation took several

hours. Our method runs on CPU and the computation

took 45 minutes.

It must first be stated that quantitative evaluation

is impossible since there is no ground truth, and dif-

ferent artistic choices can be rated differently by users.

The neural method consists in matching statistics over

the layers of a deep pre-trained convolutional network.

It has been known that some of these layers corre-

sponds to Gabor filters. For this reason, results of [22]

exhibit a better stylization of contours. However, we

think that our results preserve better the color tones

http://oriel.github.io/video_style_transfer.html
http://oriel.github.io/video_style_transfer.html
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Fig. 6: Results of our still image style transfer method with Signac’s and Seurat’s paintings as examples. Top row:

example images, Left column: original images.
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Original sequences

t = 1

t = 25

t = 50

Results of proposed video style transfer

Example image

Fig. 7: Video style transfer results for three different sequences from Sintel [28] with the painting “Cry” by Edvard

Munch as example image. It can be noted that the stylized frames resulting from our video style transfer method

have temporally coherent style.

of the style image, while being a possible and different

artistic choice.

6 Conclusion

This paper has proposed a new approach for video style

transfer, in which temporal style propagation is used to

obtain temporal coherence between stylized frames. We

have seen that the extension of style transfer from im-

ages to videos is not straightforward, as a stylization in

a frame-by-frame basis is very likely to result in flick-

ering. Thus, we proposed a technique that guarantees

a temporally coherent stylization by propagating the

style from keyframes. For that, we relied in a combina-

tion of optical flow warping and style resynthesis. Our

results show that such a technique is well adapted for

stylization of videos. However, it should be noted that

the quality of video stylization is strongly dependent

on the accuracy of optical flow estimation. Hence, our

video style transfer would clearly benefit from advances

in the field of optical flow estimation.

Furthermore, we have shown that decomposing in-

put images into an adaptive patch partition is an effi-

cient approach not only for image style transfer, but

also for the extension of style transfer to videos. In

this sense, our results suggest, together with [19], that

adaptive patches are useful to obtain a completely un-

supervised style transfer in which no previous learning
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t=
1

t=
5

t=
1
0

t=
1
5

t=
2
0

t=
2
5

Fig. 8: Video style transfer results for Sintel synthetic sequence [28] and two different example styles. Top row:

example images, Left column: original images. It can be noted that the stylized frames resulting from our video

style transfer method have temporally coherent style.

is required, differently to the neural network approach

[22]. Another clear advantage of our approach is the

reduced computational complexity: while our method

needed less than a hour to stylize the video of Fig. 11

using the CPU, the neural network approach needed

several hours of processing in a GPU.
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