

Split and Match: Example-based Adaptive Patch Sampling for Unsupervised Style Transfer O.Frigo, N. Sabater, J. Delon, P. Hellier

Université Paris Descartes / Technicolor R & I

Original (u)

Example (v)

Partition (R)

Stylization (û)

INTRODUCTION

• *Example-based style transfer*: transform an image to **mimic the style** of a given example

• Style as a combination of global **color** and local **texture** transfer

Previous patch-based texture transfer methods assume regular grid

Our Approach

- Let $\mathfrak{u}: \Omega_{\mathfrak{u}} \to \mathbb{R}^3$ be an input image and $\mathfrak{v}: \Omega_{\mathfrak{v}} \to \mathbb{R}^3$ an example style image
- Search for correspondence map $\varphi : \Omega_u \to \Omega_v$, with texture transfer defined as $\hat{u} = v(\varphi)$
- We follow the steps below to achieve style transfer:
- 1. **Split and match**: compute an adaptive partition R of Ω_u ;
- 2. **Optimization**: Search for the optimal map φ ;
- 3. Bilinear **blending** between neighbor regions and reconstruction of û;
- 4. Global color transfer [2] and contrast matching.

ADAPTIVE PATCH PARTITION

• Quadtree partition inspired by classic **Split and Merge** • Region R_i is split in four regions only if

$$\left(\sigma_{i} + d[p_{x_{i'}}^{u} p_{y_{i}}^{v}] > \omega \text{ and } \tau_{i} > \Upsilon_{0}\right) \text{ or } \tau_{i} > \Upsilon_{1}$$

• y_i is the best match of $p_{x_i}^u$ in v, σ_i is the standard deviation of $p_{x_i}^u$

Example

Split and merge result

• Distance between patches $p_{x_i}^u$ and p_y^v of size τ_i^2 given by $d[p_{x_i}^u, p_y^v] = \frac{\|p_{x_i}^u - p_y^v\|^2}{\tau^2}$

Blending

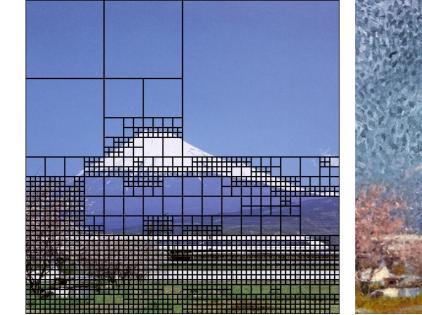
• Given a a set of overlapping patches P of arbitrary sizes Blending as a weighted sum of all overlapping intensities:

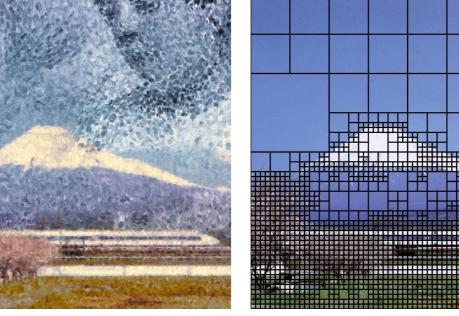
$$\tilde{u}(x) = \sum_{s=1}^{S} \alpha_s(x) \, \tilde{p}_{\chi_s}^{\hat{u}}(x) \,, \text{ where } \alpha_s(x) = \frac{\delta(x, \partial \tilde{p}_{\chi_s}^{\hat{u}})}{\sum_{s=1}^{S} \delta(x, \partial \tilde{p}_{\chi_s}^{\hat{u}})} \text{ and } \delta(x, \partial \tilde{p}_{\chi_s}^{\hat{u}}) = \frac{|x - \partial \tilde{p}_{\chi_s}^{\hat{u}}|^2}{\tau_s^2}$$

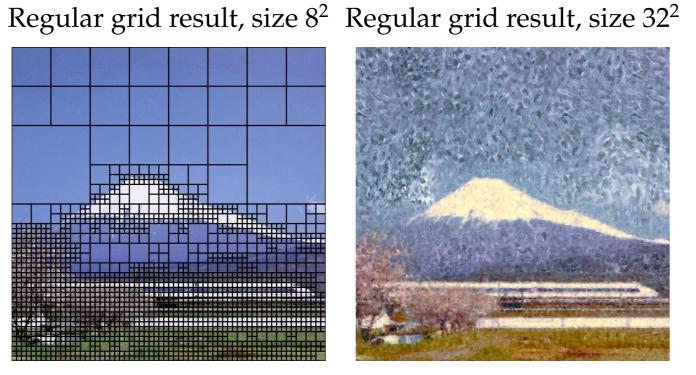
 $\alpha_s(x)$ is a weight and $\delta(x, \partial \tilde{p}_{\chi_s}^{\hat{u}})$ is the distance between pixel x and patch border $\partial \tilde{p}_{\chi_s}^{\hat{u}}$

RESULTS

Original and Example


Our method





Original

Split and merge quadtree

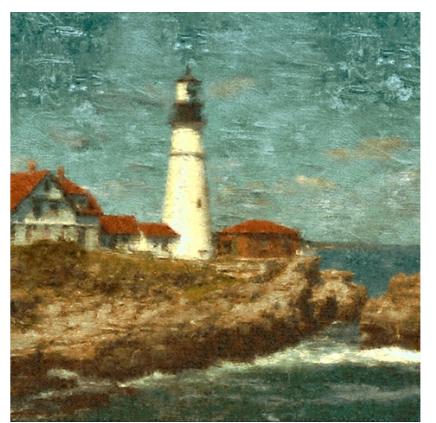
Split and match result

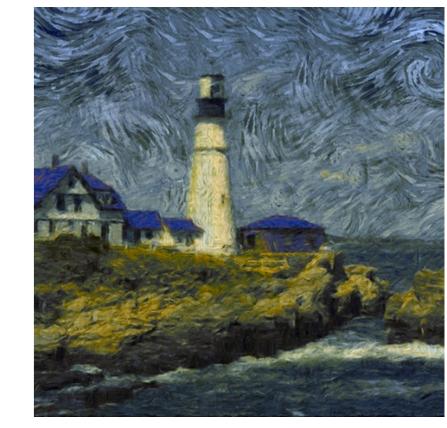
Optimal candidate selection

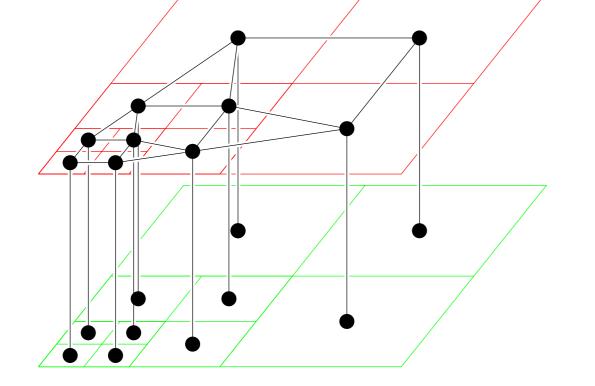
- Patch correspondences as a labeling problem
- Label assignments given by MAP inference from joint probability distribution on $L = \{L_i\}_{i=1}^n$

Split and match quadtree

MRF model over non-regular grid




Unsupervised Patch table [1]


Neural Artistic Style [3]

► For quadtree patch $p_{x_i}^u$, K candidates $L_i = \{l_{i_k}\}_{k=1}^K$ are computed by k-nearest neighbors • Then we search for label assignments $\hat{L} = {\{\hat{l}_i\}_{i=1}^n \text{ maximizing } \}}$

$$\mathbf{P}(\mathbf{L}) = \frac{1}{\mathsf{Z}} \prod_{i} \phi(\mathbf{l}_{i}) \prod_{(i,j) \in \mathcal{N}} \psi(\mathbf{l}_{i}, \mathbf{l}_{j}),$$

- where $\phi(l_i) = \exp(-d[p_{x_i}^u, p_{l_i}^v]\lambda_d)$
- $\bullet \psi(\mathfrak{l}_{i},\mathfrak{l}_{j}) = \exp(-d[\tilde{p}_{\mathfrak{l}_{i}}^{\nu},\tilde{p}_{\mathfrak{l}_{j}}^{\nu}]\lambda_{s} + |\mathfrak{l}_{i} \mathfrak{l}_{j}|^{2}\lambda_{r})$
- Approximate inference by **loopy belief propagation** [4]

- Style transfer synthesizing textures of different scales
- Local texture modeling and global color transfer leads to structure-preserving stylization
- Future work will extend our method to videos

References

- [1] C. Barnes, F.-L. Zhang, L. Lou, X. Wu, and S.-M. Hu. Patchtable: Efficient patch queries for large datasets and applications. In SIGGRAPH, Aug. 2015.
- [2] O. Frigo, N. Sabater, V. Demoulin, and P. Hellier. Optimal transportation for example-guided color transfer. In ACCV, pages 655–670, 2014.
- [3] L. A. Gatys, A. S. Ecker, and M. Bethge. A neural algorithm of artistic style. CoRR, abs/1508.06576, 2015.
- [4] Y. Weiss. Belief propagation and revision in networks with loops. Technical report, Cambridge, MA, USA, 1997.

Oriel.Frigo@technicolor.com

